Hypercapnia modulates cAMP signalling and cystic fibrosis transmembrane conductance regulator‐dependent anion and fluid secretion in airway epithelia
نویسندگان
چکیده
Hypercapnia is clinically defined as an arterial blood partial pressure of CO2 of above 40 mmHg and is a feature of chronic lung disease. In previous studies we have demonstrated that hypercapnia modulates agonist-stimulated cAMP levels through effects on transmembrane adenylyl cyclase activity. In the airways, cAMP is known to regulate cystic fibrosis transmembrane conductance regulator (CFTR)-mediated anion and fluid secretion, which contributes to airway surface liquid homeostasis. The aim of the current work was to investigate if hypercapnia could modulate cAMP-regulated ion and fluid transport in human airway epithelial cells. We found that acute exposure to hypercapnia significantly reduced forskolin-stimulated elevations in intracellular cAMP as well as both adenosine- and forskolin-stimulated increases in CFTR-dependent transepithelial short-circuit current, in polarised cultures of Calu-3 human airway cells. This CO2 -induced reduction in anion secretion was not due to a decrease in HCO3 (-) transport given that neither a change in CFTR-dependent HCO3 (-) efflux nor Na(+) /HCO3 (-) cotransporter-dependent HCO3 (-) influx were CO2 -sensitive. Hypercapnia also reduced the volume of forskolin-stimulated fluid secretion over 24 h, yet had no effect on the HCO3 (-) content of the secreted fluid. Our data reveal that hypercapnia reduces CFTR-dependent, electrogenic Cl(-) and fluid secretion, but not CFTR-dependent HCO3 (-) secretion, which highlights a differential sensitivity of Cl(-) and HCO3 (-) transporters to raised CO2 in Calu-3 cells. Hypercapnia also reduced forskolin-stimulated CFTR-dependent anion secretion in primary human airway epithelia. Based on current models of airways biology, a reduction in fluid secretion, associated with hypercapnia, would be predicted to have important consequences for airways hydration and the innate defence mechanisms of the lungs.
منابع مشابه
Vitamin C controls the cystic fibrosis transmembrane conductance regulator chloride channel.
Vitamin C (l-ascorbate) is present in the respiratory lining fluid of human lungs, and local deficits occur during oxidative stress. Here we report a unique function of vitamin C on the cystic fibrosis (CF) transmembrane conductance regulator (CFTR), a cAMP-dependent Cl channel that regulates epithelial surface fluid secretion. Vitamin C (100 microM) induced the openings of CFTR Cl channels by ...
متن کاملPolarized Signaling via Purinoceptors in Normal and Cystic Fibrosis Airway Epithelia
Airway epithelia are confronted with distinct signals emanating from the luminal and/or serosal environments. This study tested whether airway epithelia exhibit polarized intracellular free calcium (Ca(2+)(i)) and anion secretory responses to 5' triphosphate nucleotides (ATP/UTP), which may be released across both barriers of these epithelia. In both normal and cystic fibrosis (CF) airway epith...
متن کاملExtracellular zinc and ATP restore chloride secretion across cystic fibrosis airway epithelia by triggering calcium entry.
Cystic fibrosis (CF) is caused by defective cyclic AMP-dependent cystic fibrosis transmembrane conductance regulator Cl(-) channels. Thus, CF epithelia fail to transport Cl(-) and water. A postulated therapeutic avenue in CF is activation of alternative Ca(2+)-dependent Cl(-) channels. We hypothesized that stimulation of Ca(2+) entry from the extracellular space could trigger a sustained Ca(2+)...
متن کاملDefective adenosine-stimulated cAMP production in cystic fibrosis airway epithelia: a novel role for CFTR in cell signaling.
Adenosine (ADO) is an extracellular signaling molecule that is an important regulator of innate lung defense. On binding ADO, the A2B receptor (A2BR) stimulates cAMP production to activate the CFTR Cl(-) channel, increase ciliary beating, and initiate cytokine secretion. We tested the hypothesis that CFTR served as a positive regulator of the A2BRs. We found that A2BR and CFTR coimmunoprecipita...
متن کاملInfection by Toxoplasma gondii, a severe parasite in neonates and AIDS patients, causes impaired anion secretion in airway epithelia.
The airway epithelia initiate and modulate the inflammatory responses to various pathogens. The cystic fibrosis transmembrane conductance regulator-mediated Cl(-) secretion system plays a key role in mucociliary clearance of inhaled pathogens. We have explored the effects of Toxoplasma gondii, an opportunistic intracellular protozoan parasite, on Cl(-) secretion of the mouse tracheal epithelia....
متن کامل